LA FAMIGLIARITA' IN AMBITO ONCO-EMATOLOGICO

DR.SSA FEDERICA RE Chair of Hematology - Unit of Bone Marrow Transplantation University of Brescia federica.re@unibs.it

AGENDA

Definition of «Hereditary» and «Familiarity»
The Hereditary Cancer Syndromes
The WHO classification of AML/MDS with germline predisposition
The genetic counselling and NGS
The familiarity in MPNs
CLL and related involved genes

CANCER AND HEREDITY

Mutations in genetic material that increase a person's chances of developing cancer.

Genetic predisposition supposes an increased risk to develop a pathology in one person compared to an average risk estimated in general population.

The study of inherited predisposition provides an opportunity to identify key driver genes, which may lead to pathogenesis.

«HEREDITARY» AND «FAMILIARITY»

A clustering of cancer in a family due to inherited gene changes (mutations), which can be passed from parent to child

· FAMILIAL CANCER

A clustering of cancer in a family that may be due to genes and/or other shared factors, such as environment and lifestyle

······ SPORADIC CANCER

Happens by chance in one or two related family members, typically at older ages

CANCER AND HEREDITY:

HEREDITARY CANCER SYNDROMES

HEREDITARY CANCER SYNDROMES

- Early onset of cancer, higher severity.
 Arising from mutations that confer an elevated susceptibility to cancer development.
- Exhibit an autosomal dominant inheritance pattern, with a 50% risk of transmission to offspring.
- Probability of occurrence of multiple tumors in the same individual.
- Occurrence of cancers in one family, which are known to be genetically related (such as breast and ovarian cancer, or colon and uterine cancer).

HEREDITARY CANCER SYNDROMES

Disease	Clinical characteristics	Gene mutated	Prevalence of disease	Pattern of inheritance	Penetrance
MEN 2A (multiple endocrine neoplasia syndromes)	Medullary thyroid carcinoma (MTC), pheochromocytoma (PC), parathyroid disease	RET	1/40.000	AD	 MTC 100% PC 50% Parathyroid disease 30%
VHL syndrome (von Hippel-Lindau disease)	Clear-cell renal carcinoma (cRCC), pheochromocytoma (PC), spinal hemangioblastoma (SHB)	VHL	1/36.000	AD	 cRCC 75% PC 30% SHB 50%
FAP (familial adenomatous polyposis)	Colorectal, duodenal, pancreatic and papillary thyroid cancer	APC	1/8.000	AD	 Colorectal cancer 100% Duodenal cancer 4-12% Pancreatic cancer 2% Thyroid cancer 1-2%
Hereditary breast cancer	Breast, ovarian, male breast, pancreatic cancer and melanoma	BRCA1, 2	1-5/10.000	AD	 Breast cancer 50-85% Ovarian cancer 10-60%

Available genetic tests

HEMATOLOGICAL MALIGNANCIES WITH FAMILIAR PREDISPOSITION

The risk factors for LEUKEMIA

Predisposing genes to different subtypes of Familial aggregation of *hematological malignancies* and their function

Malignancies associated with genetic predisposition related with rare germline mutations.

High incidence of cases of leukemias and/or solid tumors in family members within 3° grade.

Commonly, the inheritance is AD.

MYELOID NEOPLASM WITH GERMLINE PREDISPOSITION

Category	Causative Genes	Pattern of Inheritance	Germline Genetic Alterations
Myeloid neoplasms with germline p	redisposition without a preexisting disc	order or organ dysfunction	
AML with germline CEBPA mutation	CEBPA ²	AD	N-terminal frameshift or nonsense mutation
Myeloid neoplasms with germline DDX41	DDX41 ^{21,23}	AD	Majority p.D140Gfs*2
Myeloid neoplasms with germline p	redisposition and preexisting platelet d	isorders	
Myeloid neoplasms with germline <i>RUNX1</i> mutation	RUNX1 ^{31,33}	AD	Frameshift, nonsense mutations, or deletion cluster to <i>RUNX1</i> N-terminal region and less frequently C-terminal region
Myeloid neoplasms with germline ANKRD26 mutation	ANKRD26 ^{37,38,42}	AD	Single-nucleotide substitutions in 5' untranslated region
Myeloid neoplasms with germline ETV6 mutation	ETV6 ^{47,48}	AD	Frameshift, missense, and nonsense mutations in the DNA-binding and central domains
Myeloid neoplasms with germline p	redisposition and other organ dysfuncti	on	
Myeloid neoplasms with germline <i>GATA2</i> mutation	GATA2 ^{49,50}	AD	Truncating or missense mutations in second zinc finger domain, or mutations in the noncoding regulatory region
Myeloid neoplasm associated with i	nherited bone marrow failure syndrom	es and telomere biology d	lisorders
Fanconi anemia	FANCA, FANCC, FANCG, FANCD1/BRCA2 ^{64,65}	AR, XL	Null mutations as results of frameshift, stop codon, and large deletions; altered protein mutations as results of missense, in-frame deletions, or C-terminus truncation mutations
Dyskeratosis congenita	DKC1, ⁶⁶ NOP10, NPH2, TCAB1, C16orf57, RTEL1, ^{67,68} TERC, TERT, TINF2 ⁶⁹	XL, AR, AD	Large and small deletions, insertions, and missense mutations throughout the coding regions
Telomere biology disorder	TERT, TERC ⁷⁰	AD, AR (TERT)	Large and small deletions, insertions, and missense mutations throughout the coding regions

Abbreviations: AD, autosomal dominant; AML, acute myeloid leukemia; AR, autosomal recessive; MDS, myelodysplastic syndrome; NK, natural killer; XL, X linked.

CLASSIFICAZIONE WHO 2016

Inherited of the novo mutations within the germline that markedly increase the development of a myeloid neoplasm

Arber DA, et al Blood. 2016

MYELOID NEOPLASM WITH GERMLINE PREDISPOSITION: CHARACTERISTICS

Autosomic dominant defect.

- Complete/incomplete penetrance.
- **Earlier ages** of cancer diagnosis.

Early onset in the successive generations.

- Prognostic System not suitable at all.
- Hypocellular marrow not predictive of response to immunosuppressive therapy.
- Specialized approaches to therapy (e.g. HSCT earlier).
- Frequently associated with unique nonhematopoietic manifestations.

MYELOID NEOPLASM WITH GERMLINE PREDISPOSITION: CATEGORIES

	Mutated gene	Region	Inheritance	1st report	Median age at diagnosis (range), years	Low platelets	Other organ dysfunction	Type of neoplasm
ithout a preexisting disorder _ organ dysfunction (1)	CEBPA DDX41	19q13.1 5q35.3	AD AD	2004 2015	25 (2–46) 62 (40–85)	no no	no no	AML AML, MDS, rarely CML, CMML, lymphoma, myeloma
	RUNX1	21q22.12	AD	1999	39 (7–53)	yes	no	AML, MDS, rarely CMML, T-ALL, hairy-cell leukemia
eexisting thrombocytopenia -	ANKRD26	10p12.1	AD	2011	38 (1-84)	yes	no	AML, MDS, rarely CML, CMML, CLL
	L ETV6	12p13.2	AD	2015	uncertain	yes	no	B-ALL, AML, MDS, CMML, myeloma, PV, solid tumors
her-organ dysfunction (3):	GATA2 SAMD9/SAMD9L	3q21.3 7q21.2	AD AD	2010 2016	20 (<1 to 78) uncertain	no yes	yes yes	AML, MDS, CMML, aCML MDS, AML

W

or

Pr

(2

Ot

Telomere biology disorders

BMF syndromes

AD, autosomal dominant transmission; AML, acute myeloid leukemia; MDS, myelodysplastic syndrome; CML, chronic myeloid leukemia; CMML, chronic myelomonocytic leukemia; ALL, lymphoblastic leukemia/lymphoma; CLL, chronic lymphocytic leukemia; PV, polycythemia vera; aCML, atypical chronic myeloid leukemia.

Classificazione WHO 2016

GENES MUTATED IN MYELOID NEOPLASMS WITH GERMLINE PREDISPOSITION WITHOUT OTHER ORGAN DYSFUNCTION (1)

CEBPA (CCAAT/enhancer binding protein)

- Granulocyte differentiation transcription factor, regulates genes involved in myeloid differentiation.

- Biallelic mutations, with 1 mutation occurring in the germline.
- Penetrance close to 100%.
- Patients prone to relapse, no distinctive morphologic features.

DDX41 (DEAD/H-box helicase gene)

- RNA helicase with a role in the spliceosome.
- Biallelic mutations, with 1 mutation occurring in the germline.
- Late onset, advanced disease, normal karyotype, and poor prognosis (*loss-of-function mutants*).

- Early onset and predisposition to other hematologic malignancies, i.e. non-Hodgkin lymphoma, Hodgkin disease and multiple myeloma (*missense mutants*).

Nickels EM, et al. Ther Adv Hematol. 2013 Churpek JE et al, GeneRev, 2021

CEBPA

GENES MUTATED IN MYELOID NEOPLASMS WITH GERMLINE

PREDISPOSITION AND ASSOCIATED WITH PLATELET DYSFUNCTION (2)

- RUNX1 (DNA-binding subunit of the core binding factor (CBF) transcription complex)
- Transcription factor required for the normal hematopoiesis.
- Monoallelic mutations.
- Complete penetrance.
- Clinical presentation is highly variable, early onset.
- Functional platelet defects.

ANKRD26 (Ankirin Repeat Domain 26)

- Expressed in megakaryocytes, and, to a lesser extent, in erythroid cells.

- Cause thrombocytopenia 2 (THC2), an autosomal dominant form of inherited thrombocytopenia.

- Mutations affect megakaryopoiesis and platelet production.

ETV6 (ETS Variant Transcription Factor 6)

- Missense mutations cause DNA-binding properties altered and autosomal dominant thrombocytopenia.

- Complete penetrance.
- Early onset of MDS, CMML, ALL and multiple myeloma.
- Familial predisposition to solid tumor (colorectal, breast, kidney, and skin cancers, and meningioma).

GENES MUTATED/AMPLIFIED IN MYELOID NEOPLASMS WITH GERMLINE PREDISPOSITION AND ASSOCIATED WITH OTHER ORGAN DYSFUNCTION (3)

GATA2 (transcription factor that bind to the DNA sequence "GATA")

- Regulates hematopoiesis, autoimmunity, and inflammatory and developmental processes.

- No genotype-phenotype correlations.
- 70% penetrance.
- Lymphedema, atypical infections, immune deficiencies.
- Earlier age at onset.
- Poor prognosis, HSCT required.

Telomere biology disorders (TERT or TERC)

- Ribonucleoprotein complex that is responsible for maintaining telomeres.

- Mutations cause excessive telomere shortening and genomic instability.

- Each generation inherits shorter telomeres and those with the shortest telomeres are affected at earlier ages and with more severe phenotypes.

- Variable clinical manifestations (skin pigmentation, oral leukoplakia, idiopathic pulmonary fibrosis, unexplained liver disease) and incomplete penetrance.

THE CASE OF ETV6

GERMLINE PREDISPOSITION TO MYELOID MALIGNANCIES

ETS VARIANT TRANSCRIPTION FACTOR 6 (ETV6)

Fusion Gene Partner of ETV6

Mutation	Domain	Effect			
P214L	Central regulatory domain	 (i) Repression of DNA binding by the ETS domain (ii) Defective proplatelet formation and megakaryocyte maturation (iii) Alteration of proplatelet spreading (iv) Down regulation of several cytoskeletal proteins (v) ETV6 delocalization 			
N385Vfs	ETS	(i) Reduction in repressive activity(ii) Targeted proteins downregulation			
Y401N	ETS	(i) Impaired interaction with corepressor(ii) Defective proplatelet formation and megakaryocyte maturation			
R369W/R369Q	ETS	(i) Reduction in repressive activity(ii) Targeted protein downregulation(iii) ETV6 delocalization			

ETS = highly conserved C-teminal DNA-binding domain.

Hang et al. Nat Genet. 2015

Case Report ETV6: A Candidate Gene for Predisposition to "Blend Pedigrees"? A Case Report from the NEXT-Famly Clinical Trial

Simona Bernardi⁽¹⁾,^{1,2} Mirko Farina⁽¹⁾,¹ Camilla Zanaglio,^{1,2} Federica Cattina⁽¹⁾,¹ Nicola Polverelli⁽¹⁾,¹ Francesca Schieppati⁽¹⁾,³ Federica Re,^{1,2} Chiara Foroni,^{1,2} Michele Malagola⁽¹⁾,¹ Andrew J. Dunbar,⁴ and Domenico Russo¹

70-year-old woman Progressive thrombocytopenia, Monocytosis MDS with multilineage Dysplasia Translocation (3; 21) Died for AML

MiSeq Illumina NGS platform for mutations in 25 genes associated to myeloid neoplasms (PBMCs at time of diagnosis)

ETV6 mutated

Sanger Sequencing (Germinal DNA from epithelial buccal cells) both in index case and affected relatives still living

NEXT-Famly Clinical Trial

ETV6 IN « BLEND PEDIGREES »

c.514C>T of ETV6 3'UTR on both the tumor and germline DNA of the index case

NEXT-Famly Clinical Trial

DOWNREGOLATION OF ETV6 TRANSCRIPT

NEXT-Famly Clinical Trial

Recognition of familial predisposition is necessary for the management of patients, especially for AML/MDS

GENETIC COUNSELING PROCESS FOR FAMILIAL CANCER

Indicators of potential germline predisposition:

- variant-specific, including known inheritance pattern;

variant allele frequency between 40% and 60% or >80% in the case of loss of heterozygosity;

- persistence in post-remission bone marrow samples.

Gener-Ricos G. et al. Cancer J. 2023

MANAGEMENT OF MYELOID NEOPLASMS WITH FAMILIAL PREDISPOSITION

- (1) a first- or second-degree family member who has a diagnosis of acute leukemia (AML or ALL), MDSs or other myeloid neoplasms;
- (2) a first- or second-degree family member who has a diagnosis of other hematologic neoplasms;
- (3) a first- or second-degree family member who has a diagnosis of solid tumor that has arisen in age < 40 years;
- (4) Presence of signs, symptoms or laboratory tests that resemble one of the familial myeloid neoplasms predisposition syndromes

Churpek et al., Leukemia & Lymphoma 2013

THE RED FLAGS

- History of thrombocytopenia and/or clinical bleeding propensity (as in *RUNX1*, *ANKRD26* or *ETV6* germline mutations)

- Abnormal nails or skin pigmentation, oral leukoplakia, idiopathic pulmonary fibrosis, unexplained liver disease (as in *TERT* and *TERC* germline mutations)

- Lymphedema, atypical infections, immune deficiencies (as in *GATA2* germline mutations)

NGS APPROACH FOR MDS/AML FAMILIAL PREDISPOSITION STUDY

- Identification of a family history of cancer.
- Help identify those at-risk.
- Enhanced surveillance.
- Early detection.
- Identification of novel targeted therapies.

Single nucleotide variants (SNVs) Duplications, Insertions, Deletions Exon and gene copy number changes Structural variants (SVs)

MPNs AND FAMILIAL PREDISPOSITION

NMC Philadelphia -	NMC Philadelphia +
Policitemia vera (PV)	Leucemia Mieloide Cronica (<mark>LMC</mark>)
Trombocitemia essenziale (TE)	
Mielofibrosi idiopatica o primaria (MF)	

Nangalia J et al. N Engl J Med 2013;369:2391-2405. Klampfl T et al. N Engl J 2013;369:2379-2390.

MPNs AND FAMILIAL PREDISPOSITION

7% of apparently sporadic MPN are familial

- Relatives of MPN patients have a <u>five- to</u> <u>seven-fold increased risk</u> of developing MPN.

Evidences of Familial Predisposition:

- Some MPN patients are shown to be "biclonal"

- Phenotypic diversity of MPN
- Different subtypes of the disease (PV, TE and MF) in patients who carry the same mutations

Rumi et al, 2007; Landgren et al, 2008

MPNs WITH FAMILIAL PREDISPOSITION

- What is truly inherited is a genetic predisposition to acquire one of the three different MPN-specific mutations (JAK2, MPL, CALR).
- Predisposition would be inherited as an autosomaldominant trait with variable expression and incomplete penetrance.
- Clinical features of Familial MPNs are the same of Somatic MPNs: the genetic test is not required since syntoms, reponse to treatment and disease development are superimposable with ones of sporadic MPNs.
- Survival is generally similar in familial and sporadic MPN (exception for ATG2B).
- Somatic mutagenesis is increased in familial MPNs.

Genetic factor	Role					
Predisposing SNP						
JAK2 GGCC	Associated with an increased risk of developing <i>JAK2</i> V617F-mutated MPN (hypermutability hypothesis) or MPN in general (fertile ground hypothesis). Not responsible by itself for familial clustering of MPN.					
TERT rs2736100 C	Associated with an increased risk of developing MPN.					
	May be responsible for a substantial part of familial clustering in MPN.					
SH2B3 rs3184504	Increased risk of JAK2-mutated MPN					
MECOM, HBS1L-MYB, SH2B3,	Other predispositions alleles that predispose to both age-related JAK2					
TET2, ATM, CHEK2, LINC-PINT,	V617F clonal haematopoiesis in the general population as well as MPN					
GFI1B	independent of V617F status.					
Predisposing germline mutations						
Germline duplication of ATG2B, GSKIP	Overexpression of these two genes enhances haematopoietic progenitor differentiation by increasing progenitor sensitivity to thrombopoietin. They cooperate with acquired JAK2, CALR and MPL mutations during MPN development					
Germline RBBP6 mutations	RBBP6 mutations are present in about 5% of familial MPN.					
Germline SH2B3 mutations	SH2B3 mutations are present in about 2% of familial MPN					

MPN, myeloproliferative neoplasm; SNP, single nucleotide polymorphism.

Harutyunyan et al, 2016. Rumi et al, 2016

MPNs WITH FAMILIAL PREDISPOSITION

A= Homogenous clinical phenotype B= Heterogenous clinical phenotype C= Homogeneous molecular status D= Heterogeneous molecular status

MPNs WITH FAMILIAL PREDISPOSITION: DISEASE ANTICIPATION

Patients of the second generation have shorter telomeres than first generation: decrease in age at diagnosis in each subsequent generation

Rumi E et al. J Clin Oncol 2007

JAK2 GGCC

JAK2 gene haplotype (GGCC or 46/1) confers susceptibility to JAK2 mutation-positive myeloproliferative neoplasms

Anelli L, et al. Int J Mol Sci. 2018

JAK2 GGCC haplotype predisposes to the acquisition of JAK2 mutations also in familial MPN, but does not underlie familial clustering.

Case population	Control population	Geno	otype freque case popula	ency (%) tion	Genotype frequency (%) control population				Odds ratio (95%	i Cl)	
		CC	GC	GG	CC	GC	GG	CC	GC	GG	P value
Familial MPN (n=88)	control (n=203)	24 (27.3)	51 (58.0)	13 (14.8)	114 (56.2)	69 (34.0)	20 (9.9)	1	4.36 (2.18-8.7)	4.77 (1.9-11.99)	1.193 x 10 ⁻⁰⁶
Familial MPN V617F+ (n=61)	control (n=203)	13 (21.3)	37 (60.7)	11 (18.0)	114 (56.2)	69 (34.0)	20 (9.9)	1	4.8 (2.38-9.67)	4.78 (1.88-12.2)	4.929 x 10 ⁻⁰⁶
Familial MPN V617F- (n=27)	control (n=203)	11 (40.7)	14 (51.9)	2 (7.4)	114 (56.2)	69 (34.0)	20 (9.9)	1	2.10 (0.90-4.89)	1.04 (0.21-5.03)	0.2042
Sporadic MPN (n=684)	control (n=203)	223 (32.6)	353 (51.6)	108 (15.8)	114 (56.2)	69 (34.0)	20 (9.9)	1	2.97 (2.21-4.00)	3.73 (2.42-5.76)	3.27 x 10 ⁻¹⁵
Sporadic MPN V617F+ (n=481)	control (n=203)	125 (26.0)	268 (55.7)	88 (18.3)	114 (56.2)	69 (34.0)	20 (9.9)	1	3.54 (2.45-5.11)	4.01 (2.32-6.94)	7.19 x 10 ⁻¹³
Sporadic MPN V617F- (n=202)	control (n=203)	98 (48.5)	84 (41.6)	20 (9.9)	114 (56.2)	69 (34.0)	20 (9.9)	1	1.42 (0.93-2.15)	1.16 (0.59-2.29)	0.2620
Familial MPN V617F+ (n=61)	sporadic MPN /617F+ (n=481	13 (21.3))	37 (60.7)	11 (18.0)	125 (26.0)	268 (55.7)	88 (18.3)	1	1.33 (0.68-2.59)	1.2 (0.51-2.81)	0.6975
Cl confidence intern	UNITE JAK2	Vol TP-positio	e MPN Votri	- JAK2-V017F	-nepatine MPN						

Olcaydu D et al., haematologica 2011

TERT

50

20

TERT2

1 2 3 4 5 6 7 8 9 10 11 12 15 54 15 16 81 11 111 1111 11 118

Familial MPN (n = 121)

Familial MPN probands (n = 75)

Sporadic MPN (n = 717)

Sporadic MPN (n = 717)

5.0 (6)

5.3 (4)

39.7 (48)

36.0 (27)

55.4 (67)

58.7 (44)

In contrast, significantly of MPN compare suggesting responsible of	TERT mut enriched in ed to spora that it i f familial clu	ation fam dic M nay sterin	is ilial PN, be g.	Germline rs Other Jung bladder	neoplasia: glioma, cancers, r cancers, etc	chr	153 151 14 12 12 12 12 13 14 15 14 15 21 22 23 23 24 23 23 24 25	Odds ratio	10 5 2 1 36100 AA AC CC 974944 CC CC CC	AA AC CC AA A CG CG CG GG G sporadic MPN familial MPN	NC CC
		Gen	otype freque case populat	ncy (%) ion	Gen	otype freque ontrol popula	ncy (%) ation	17 22	Odds ratio	(95% CI)	
Case population	Control population	A/A	A/C	C/C	A/A	A/C	C/C	A/A	A/C	C/C	P value
Sporadic MPN(n = 717)	Control(n = 202)	11.3(81)	46.2 (331)	42.5 (305)	23.3 (47)	43.6 (88)	33.2 (67)	1	2.18 (1.42-3.35)	2.64 (1.69-4.13)	1.15 × 10 ⁻⁴
Sporadic MPN JAK2+ (n = 516)	Control ($n = 202$)	10.7(55)	44.8 (231)	44.6 (230)	23.3 (47)	43.6 (88)	33.2 (67)	1	2.24 (1.42-3.55)	2.93 (1.82-4.72)	5.55×10^{-5}
Sporadic MPN CALR+ (n = 126)	Control $(n = 202)$	11.9 (15)	46.8 (59)	41.3 (52)	23.3 (47)	43.6 (88)	33.2 (67)	1	2.10 (1.08-4.10)	2.43 (1.23-4.82)	0.0270
Familial MPN (n = 121)	Control $(n = 202)$	5.0 (6)	39.7 (48)	55.4 (67)	23.3 (47)	43.6 (88)	33.2 (67)	1	4.27 (1.7-10.72)	7.83 (3.14-19.55)	1.10×10^{-6}
Familial MPN probands ($n = 75$)	Control $(n = 202)$	5.3 (4)	36.0 (27)	58.7 (44)	23.3 (47)	43.6 (88)	33.2 (67)	1	3.61 (1.19-10.92)	7.72 (2.60-22.94)	2.65×10^{-5}

11.3 (81)

11.3 (81)

46.2 (331)

46.2 (331)

42.5 (305)

42.5 (305)

1

1

1.96 (0.81-4.73)

1.65 (0.56-4.85)

Jager et al, AJH 2014

0.0090

0.0180

2.97 (1.24-7.08)

2.92 (1.02-8.37)

SH2B3 (LNK)

- Negative regulator of JAK-STAT signaling.
- 2% of MPN families: germ line SH2B3 mutations rarely occur in familial MPNs and do not segregate with the disease phenotype.
- Mutations in SH2B3, either germ line or acquired, may cooperate with acquired driver mutations in JAK2, CALR, or MPL to determine disease phenotype in MPNs.

Rumi et al, Blood 2016 Oh S.T. et al, Blood 2010

RBBP6

- □ 5% of MPN families.
- □ Low penetrance associated with RBBP6 mutations.
- Common germline predisposition factors, such as JAK2 GGCC haplotype and TERT rs2736100 SNP, seem to have an additive effect on the MPN risk in RBBP6 mutation carriers.

Pedigree	Sample	Diagnosis	JAK2/MPL/CALR	cDNA change	Amino acid change	Polyphen 2 score	Polyphen 2 prediction	In healthy controls
1	MPD214	ET	MPL-W515L	c.4706G>T	R1569H	0.766	Possibly damaging	0/715
	MPD219	PMF	CALR-Type 1	c.4706G>T	R1569H	1		—
	MPD227	PMF	JAK2-V617F	c.4706G>T	R1569H			
2	f16p1	PMF	JAK2-V617F	c.4961A>G	E1654G	0.375	Benign	0/649
3	570	PMF	JAK2-V617F	c.4352G>C	R1451T	0.942	Probably damaging	0/642
Sporadic	H_0327	PV	JAK2-Ex12del	c.4331C>T	S1444F	0.976	Probably damaging	0/650
Sporadic	H_0580	ET	JAK2-V617F	c.4331C>T	S1444F	0.976	Probably damaging	0/650
Sporadic	H 0437	PV	-	c.5018C>T	A1673V	0.010	Benign	0/607

cDNA, complementary DNA; del, deletion; Ex12del, exon 12 deletion E543-D544.

Harutyunyan A.S. et al., Blood 2016

ATG2B E GSKIP

- 700-kb germline duplication.
- Enhances haematopoietic progenitor differentiation.
- Increase sensibility to TPO.
- Cooperate with acquired JAK2, CALR, MPL.
- Predispose to myeloid malignancies, most frequently TE.
- Poor prognosis and rapid progression to AML.

CHRONIC LYMPHOCYTIC LEUKEMIA (CLL)

□Presence of a clonal population of B-cell lymphocytes (≥5.000/µL clonal lymphocytes B) with a characteristic immunophenotype (CD19+, CD20+, CD23+, CD79b low, FMC7- low).

25% of all leukemia and is the most common form of lymphoid malignancy in Western countries.

FAMILIAL CLL

- Family history is the strongest risk factor identified in CLL.
- First-degree relatives of individuals with CLL have a three- to eightfold increased risk of CLL and smaller but still increased risks of Hodgkin's or non-Hodgkin's lymphomas.
- CLL is genetically heterogeneous, with multiple loci involved.
- Familial CLL appears like sporadic CLL in clinical features but has been reported to show more frequent somatic hypermutation of the immunoglobulin heavy-chain variable (IgHV) region.

FAMILIAL CLL

Hypermutation of IgHV in CLL

- Mutated CLL was observed in 68% of the familial cases, compared with 47% of the sporadic cases.
- Mutations in genes: VH3 (49%), VH1 (25%), and VH4 (18%).
- Mutation status was correlated within families.
- Mutation status was not related to age at diagnosis or stage.

Crowther et al. Blood 2008

FAMILIAL CLL

Monoclonal B-cell lymphocytosis (MBL): may provide a window into the earliest stages of CLL pathogenesis and an opportunity to identify additional gene carriers within families.

 MBL more common in unaffected relatives in CLL families.
 88–96% have shown mutated *IgVH* genes, with intraclonal heterogeneity like CLL.

Marti GE et al., Cytometry B Clin. Cytom 2003; Vogt RF et al., Br. J. Haematol 2007; Slager SL et al., Blood 2021

GENES INVOLVES IN FAMILIAL CLL

APOPTOSIS	ARL11,BMF,FAS,BCL2,BC L2L11,CASP8,CFLAR
SIGNALING PATHWAYS	UBR5,LEF1,TLE3
IMMUNE RESPONSE	SP140,OAS1,BCL6,IRF8
TELOMERES LENGHT MAINTENANCE	ACD,TERF2IP,POT1

GWAS analysis. Speedy HE et al. Nat Commun 2019

SHELTERIN COMPLEX

Telomere length is one of the main element affected in CLL.

The shorter are the telomere, the higher is the proliferation rate and the aggressiveness of the disease.

The Shelterin protein complex has a fundamental role in modulating the telomere replication process, in safeguarding the latter from degradation processes and aberrant recombinations, and in regulating telomerase activity.

PROTECTION OF TELOMERES 1 (POT1)

□ POT1 in 6% of the CLL families.

- Associated with an increased risk for multiple cutaneous melanomas and gliomas.
- POT1-mutated CLL cells have numerous telomeric and chromosomal abnormalities.
- A 3.6-fold increased risk for CLL was reported for individuals with POT1 germline variant p.Gln376Arg.
- This cohort also exhibited a younger average age of diagnosis than in sporadic CLL (59 years vs 70 years).

Recommended Surveillance for Individuals with POT1

Speedy HE et al. Blood 2016

ATM SERINE/THREONINE KINASE GERMLINE MUTATIONS IN CLL

(781 patients) Ataxia-telangiectasia mutated (ATM) variants □ Somatic disruption of ATM by (del)11q and/or mutation is common Patients with germline pathogenic variants CLL (24% of patients): in voluminous adenomegaly and rapid Patients with germline VUS-predicted pathogenic Patients with germline VUS-predicted benign disease progression. Rest of the patients Germline ATM variants are pathogenic, VUS, and benign; Patients with acquired del(11q) heterozygous, mostly missense. Rest of the patients with germline pathogenic variants and VUS-predicted pathogenic □ Somatic loss of the second ATM Loss of ATM

allele in patients with ATM germline pathogenic mutations is frequent, influencing rapid disease progression.

Patrackova et al Br J Haematol 2022

33.3%

Complete

Activity

4%

66.7%

Partial Loss

of ATM

Activity

CLL